Question 1.

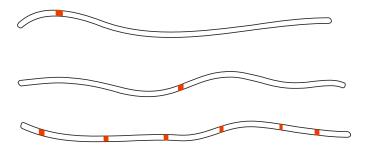
In order to calculate the molecular weight of a mixture of polystyrene after sonication, the following equation can be applied

$$\frac{1}{M_{n,t}} = \frac{1}{M_{n,0}} + k \dot{t}$$

and

$$k = \frac{k}{M_o}$$

In which $M_{n,t}$ is the number average molecular weight after t min of sonication, $M_{n,0}$ is the initial number average molecular weight, M_o is the molecular weight of the monomer unit and k is the degradation rate ($x \cdot 10^{-6} \text{ min}^{-1}$)


- (a) Consider a mixture of polystyrene (C₆H₅CH=CH₂) with an average number molecular weight of 500kD and a rate constant of 0.22, what is the number average molecular weight of the mixture after 300 min of sonication?
- (b) Taking the same mixture as in the previous question, how long would you need to sonicate this mixture to reduce the molecular weight to half of the original?
- (c) Degradation of a polymer under ultrasonication only occurs if the molecular weight of the polymer is high enough, as the length of the polymer plays a role in the arising forces. As a consequence, degradation does not continue indefinitely, but only until the polymer chains have reached a limiting molecular weight. For polystyrene in toluene this limited is represented by:

$$M_{n.lim} = 41\,800 - 90.8\,x\,I\,(W\,cm^{-2})$$

Calculate the number average molecular weight of the polystyrene mixture after sonicating until reaching the point at which no more degradation occurs, for the following intensities: 50, 100, and 200 W cm⁻²

Question 2.

The following polymers all have been synthesized containing one or more breakable mechanophores (in red) at different positions along the polymer chain. Describe a method to test whether these mechanophores are active and described the results that would indicate scission of the polymer chain at the position of the mechanophores.

Question 3.

A group of scientists has synthesized the polymer shown below, which has a build-in mechanophore.

- (a) To test whether their theory works, they subject a solution containing the polymer to ultrasonication and analyze the results. Using the table (last page) of bond dissociation energies, indicate where the molecule is most likely to break.
- (b) The polymer is synthesized with an n of 450. Draw the molecular weight distribution of the polymer i) before sonication, ii) after sonication, and iii) half-way the sonication procedure.

Lowry, T. H.; Richardson, K. S. "Mecharusm and Theory in Organic Chemistry" Harper & Row, 1987 pp 161-162

FOR VARIOUS TYPES OF BONDS Bond Dissociation Energiesa, Single Bonds: Diatomic Molecules

Bond	Energy	Bond	Energy	Bond	Energy
н-н	[436.0]	FCl	(255)	H-F	[568]
D—D	[444.5]	F-Br	[251] .	HCl	[431]
F-F	(159)	F—I	[243]	H—Br	[366]
CI-CI	[243]	Cl—Br	(218)	H—I	[298]
Br-Br	[192]	ClI	į209j		
II	[151]				

Polyatomic Molec	ules	
Bond	Energy	
CH ₃ CH ₂ —CHCH ₂ CH ₃ CH ₂ —C ₆ H ₅ CH ₂ CH—CHCH ₂ HCC—CCH C ₆ H ₅ —C ₆ H ₅ CH ₂ CH—C ₆ H ₅	(372) (377) (418) (628) (418) (414)	
CH ₃ —COCH ₃ CH ₃ CH ₂ —COCH ₃ CH ₃ —CN CH ₃ —CN CH ₃ —CN CH ₃ CH—COCH ₃ CH ₃ CH—CN H—OH H—OH H—OH H—OCH ₃ H—O ₇ CCH ₃ H—O ₇ CCH ₃	[406] [498] [377] [377] [427] [356] [469]	
HO—CH ₂ CH ₃ HO—C ₆ H ₅ HO—COCH ₃	[383] [431] [456]	
CH ₃ O—CH ₃ CH ₃ O—CH ₂ CH ₃ CH ₃ O—CHCH ₂ CH ₃ O—C ₆ H ₃ CH ₃ O—COCH ₃	[335] [335] [366] [381] [406]	
HO—OH HO—Br CH ₃ O—OCH ₃	[213] [238] [151]	
H ₂ N—H H ₂ N—CH ₃	[431] [331]	

"From Gordon, A. J.: Ford, R. A. "The Chemists Companion"; Wiley: New York, 1972. Reprinted by permission of John Wiley & Sons, Copyright 1972 John Wiley & Sons, Inc.

Numbers in brackets are values in kJ mol-1.